Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Clin Pathol ; 52(4): 716-721, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012962

ABSTRACT

B-cell leukemia is a rare form of hematologic neoplasia in sheep, especially in adult animals. We present a case report of a 5-year-old WhiteFace Sheep wether with suspected acute lymphoblastic leukemia. The patient, a second-generation relative of ewes experimentally inoculated with atypical scrapie, exhibited acute lethargy and loss of appetite. Laboratory investigation revealed marked leukocytosis, lymphocytosis, and abnormal serum chemistry panel results. Microscopic examination of blood and bone marrow smears exhibited a high percentage of large neoplastic cells with lymphoid characteristics. Histopathologic analysis of the spleen, liver, lungs, and other organs confirmed the presence of widespread tissue infiltration by neoplastic cells. Immunohistochemical labeling demonstrated strong intracytoplasmic labeling for CD20, consistent with B-cell neoplasia. Flow cytometric analysis confirmed the B-cell lineage of the neoplastic cells. Screening for bovine leukemia virus, which can experimentally cause leukemia in sheep, yielded a negative result. In this case, the diagnosis of B-cell leukemia was supported by a comprehensive panel of diagnostic evaluations, including cytology, histopathology, immunohistochemistry, and immunophenotyping. This case report highlights the significance of accurate diagnosis and classification of hematologic neoplasia in sheep, emphasizing the need for immunophenotyping to aid in the diagnosis of B-cell leukemia. It also emphasizes the importance of considering spontaneous leukemia as a differential diagnosis in sheep with lymphoid neoplasia, especially in the absence of circulating infectious diseases.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Lymphocytosis , Lymphoma , Sheep Diseases , Male , Animals , Sheep , Female , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/veterinary , Lymphoma/veterinary , Spleen/pathology , Lymphocytosis/pathology , Lymphocytosis/veterinary , Immunophenotyping/veterinary , Flow Cytometry/veterinary , Sheep Diseases/diagnosis
2.
PLoS One ; 18(11): e0291805, 2023.
Article in English | MEDLINE | ID: mdl-37988399

ABSTRACT

Small ruminants, especially sheep, are essential for sustainable agricultural production systems, future food/nutrition security, and poverty reduction in developing countries. Within developed countries, the ability of sheep to survive on low-quality forage intake could act as buffer against climate change. Besides sheep's importance in sustainable agricultural production, there has been less ongoing work in terms of sheep genetics in Near East, Middle East and in Africa. For lamb meat production, body weight and average daily gain (ADG) until weaning are critical economic traits that affects the profitability of the industry. The current study aims to identify single nucleotide polymorphisms (SNPs) that are significantly associated with pre-weaning growth traits in fat tail Akkaraman lambs using a genome-wide association study (GWAS). A total of 196 Akkaraman lambs were selected for analysis. After quality control, a total of 31,936 SNPs and 146 lambs were used for subsequent analyses. PLINK 1.9 beta software was used for the analyses. Based on Bonferroni-adjusted p-values, one SNP (rs427117280) on chromosome 2 (OAR2) had significant associations with weaning weight at day 90 and ADG from day 0 to day 90, which jointly explains a 0.8% and 0.9% of total genetic variation respectively. The Ovis aries natriuretic peptide C (NPPC) could be considered as a candidate gene for the defined significant associations. The results of the current study will help to increase understanding of the variation in weaning weight and ADG until weaning of Akkaraman lambs and help enhance selection for lambs with improved weaning weight and ADG. However, further investigations are required for the identification of causal variants within the identified genomic regions.


Subject(s)
Genome-Wide Association Study , Sheep , Animals , Body Weight/genetics , Genome-Wide Association Study/veterinary , Sheep/genetics , Weaning
3.
Genes (Basel) ; 14(3)2023 03 14.
Article in English | MEDLINE | ID: mdl-36980985

ABSTRACT

The objective of this study was to uncover the genetic background of wool quality, a production trait, by estimating genomic heritability and implementing GWAS in Akkaraman sheep. The wool characteristics measured included fibre diameter (FD) and staple length (SL) at the age of 8 months and yearling fibre diameter (YFD), yearling staple length (YSL) and yearling greasy fleece weight (YGFW) at 18 months of age. Animals were genotyped using the Axiom 50 K Ovine Genotyping Array. Maximum likelihood estimations of a linear mixed model (LMM) were used to estimate genomic heritability, where GWAS was conducted following a score test of each trait. Genomic heritability estimates for the traits ranged between 0.22 and 0.63, indicating that phenotypes have a moderate range of heritability. One genome- and six chromosome-wide significant SNPs were associated with the wool traits in Akkaraman lambs. Accordingly, TRIM2, MND1, TLR2, RNF175, CEP290, TMTC3, RERE, SLC45A1, SOX2, MORN1, SKI, FAAP20, PRKCZ, GABRD, CFAP74, CALML6 and TMEM52 genes as well as nine uncharacterized regions (LOC101118971, LOC105609137, LOC105603067, LOC101122892, LOC106991694, LOC106991467, LOC106991455, LOC105616534 and LOC105609719) were defined as plausible candidates. The findings of this study shed light on the genetics of wool quality and yield for the Akkaraman breed and suggests targets for breeders during systematic breeding programmes.


Subject(s)
Genome , Wool , Sheep , Animals , Phenotype , Genotype , Genome/genetics , Genomics
4.
Genes (Basel) ; 13(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36553445

ABSTRACT

Genome-wide association studies (GWAS) have been used as an effective tool to understand the genetics of complex traits such as gastrointestinal parasite (GIP) resistance. The aim of this study was to understand the genetics of gastrointestinal parasite (nematodes, Moniezia spp., Eimeria spp.) resistance in Akkaraman sheep by performing genomic heritability estimations and conducting GWAS to uncover responsible genomic regions. This is one of the first studies to examine the genetic resistance of Akkaraman sheep to the tapeworm parasite. The samples from 475 animals were genotyped using the Axiom 50K Ovine Genotyping Array. Genomic heritability estimates ranged from 0.00 to 0.34 for parasite resistance traits. This indicates that measured phenotypes have low to moderate heritability estimates. A total of two genome-wide significant SNP associated with TNEM3 and ATRNL1 genes and 10 chromosome-wide significant SNPs related with 10 genes namely NELL1, ST6GALNAC3, HIPK1, SYT1, ALK, ZNF596, TMCO5A, PTH2R, LARGE1, and SCG2 were suggested as candidates for parasite resistance traits. The majority of these candidate genes were involved in several basic biological processes that are essential and important for immune system functions and cellular growth; specifically, inflammatory responses, cellular transport, cell apoptosis, cell differentiation, histone de-acetylation, and endocytosis. These results have implications for animal breeding program studies due to the effect that the genetic background has on parasite resistance, which underlies many productive, health, and wellness-related traits.


Subject(s)
Nematoda , Parasites , Sheep/genetics , Animals , Genome-Wide Association Study/veterinary , Nematoda/physiology , Genotype , Genomics
5.
Sci Rep ; 12(1): 18477, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323871

ABSTRACT

The aim of this study was to estimate genomic heritability and the impact that genetic backgrounds have on blood parameters in Akkaraman sheep by conducting genome-wide association studies and regional heritability mapping analysis. Genomic heritability estimates for blood parameters ranged from 0.00 to 0.55, indicating that measured phenotypes have a low to moderate heritability. A total of 7 genome- and 13 chromosome-wide significant SNPs were associated with phenotypic changes in 15 blood parameters tested. Accordingly, SCN7A, SCN9A, MYADM-like, CCDC67, ITGA9, MGAT5, SLC19A1, AMPH, NTRK2, MSRA, SLC35F3, SIRT6, CREB3L3, and NAV3 genes as well as three undefined regions (LOC101117887, LOC106991526 and LOC105608461) were suggested as candidates. Most of the identified genes were involved in basic biological processes that are essential to immune system function and cellular growth; specific functions include cellular transport, histone deacetylation, cell differentiation, erythropoiesis, and endocytosis. The top significant SNP for HCT, MCH, and MCHC was found within a genomic region mainly populated by the MYADM-like gene family. This region was previously suggested to be under historical selection pressure in many sheep breeds from various parts of the world. These results have implications on animal breeding program studies due to the effect that the genetic background has on blood parameters, which underlying many productive and wellness related traits.


Subject(s)
Genome-Wide Association Study , Genome , Sheep/genetics , Animals , Genome-Wide Association Study/methods , Genomics , Polymorphism, Single Nucleotide , Phenotype
6.
Genes (Basel) ; 13(8)2022 08 10.
Article in English | MEDLINE | ID: mdl-36011330

ABSTRACT

In the current study, the genetic architecture of growth and linear type traits were investigated in Akkaraman sheep. Estimations of genomic heritability, genetic correlations, and phenotypic correlations were implemented for 17 growth and linear type traits of 473 Akkaraman lambs by the univariate and multivariate analysis of animal mixed models. Correspondingly, moderate heritability estimates, as well as high and positive genetic/phenotypic correlations were found between growth and type traits. On the other hand, 2 genome-wide and 19 chromosome-wide significant single nucleotide polymorphisms were found to be associated with the traits as a result of animal mixed model-based genome-wide association analyses. Accordingly, we propose several genes located on different chromosomes (e.g., PRDM2, PTGDR, PTPRG, KCND2, ZNF260, CPE, GRID2, SCD5, SPIDR, ZNF407, HCN3, TMEM50A, FKBP1A, TLE4, SP1, SLC44A1, and MYOM3) as putative quantitative trait loci for the 22 growth and linear type traits studied. In our study, specific genes (e.g., TLE4, PTGDR, and SCD5) were found common between the traits studied, suggesting an interplay between the genetic backgrounds of these traits. The fact that four of the proposed genes (TLE4, MYOM3, SLC44A1, and TMEM50A) are located on sheep chromosome 2 confirms the importance of these genomic regions for growth and morphological structure in sheep. The results of our study are therefore of great importance for the development of efficient selection indices and marker-assisted selection programs, as well as for the understanding of the genetic architecture of growth and linear traits in sheep.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Animals , Genome-Wide Association Study/methods , Genomics , Phenotype , Polymorphism, Single Nucleotide , Sheep/genetics
7.
BMC Bioinformatics ; 22(1): 296, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078271

ABSTRACT

BACKGROUND: Coxiella burnetii is the Gram-negative bacterium responsible for Q fever in humans and coxiellosis in domesticated agricultural animals. Previous vaccination efforts with whole cell inactivated bacteria or surface isolated proteins confer protection but can produce a reactogenic immune responses. Thereby a protective vaccine that does not cause aberrant immune reactions is required. The critical role of T-cell immunity in control of C. burnetii has been made clear, since either CD8+ or CD4+ T cells can empower clearance. The purpose of this study was to identify C. burnetii proteins bearing epitopes that interact with major histocompatibility complexes (MHC) from multiple host species (human, mouse, and cattle). RESULTS: Of the annotated 1815 proteins from the Nine Mile Phase I (RSA 493) assembly, 402 proteins were removed from analysis due to a lack of inter-isolate conservation. An additional 391 proteins were eliminated from assessment to avoid potential autoimmune responses due to the presence of host homology. We analyzed the remaining 1022 proteins for their ability to produce peptides that bind MHCI or MHCII. MHCI and MHCII predicted epitopes were filtered and compared between species yielding 777 MHCI epitopes and 453 MHCII epitopes. These epitopes were further examined for presentation by both MHCI and MHCII, and for proteins that contained multiple epitopes. There were 31 epitopes that overlapped positionally between MHCI and MHCII across host species. Of these, there were 9 epitopes represented within proteins containing ≥ 5 total epitopes, where an additional 24 proteins were also epitope dense. In all, 55 proteins were found to contain high scoring T-cell epitopes. Besides the well-studied protein Com1, most identified proteins were novel when compared to previously studied vaccine candidates. CONCLUSION: These data represent the first proteome-wide evaluation of C. burnetii peptide epitopes. Furthermore, the inclusion of human, mouse, and bovine data capture a range of hosts for this zoonotic pathogen plus an important model organism. This work provides new vaccine targets for future vaccination efforts and enhances opportunities for selecting multiple T-cell epitope types to include within a vaccine.


Subject(s)
Coxiella burnetii , Animals , Antigens, Bacterial , Bacterial Vaccines , Cattle , Epitopes, T-Lymphocyte , Mice , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL
...